
RADemics

Parallel Processing
Frameworks on
FPGA for High
Throughput
Neural Network
Inference

R. Jegadeesan, A. Devi
JYOTHISHMATHI INSTITUTE OF TECHNOLOGY &
SCIENCE, HYDERABAD INSTITUTE OF TECHNOLOGY
AND MANAGEMENT

Parallel Processing Frameworks on FPGA for

High Throughput Neural Network Inference
1R. Jegadeesan, Professor & HOD, Department of Computer Science and Engineering,

Jyothishmathi Institute of Technology & Science, Nustulapur, Karimnagar, India.

ramjaganjagan@gmail.com

2A. Devi, Assistant Professor, Department of CSE, Hyderabad Institute of Technology and

Management, Hyderabad, Telangana, India. devim.cse@hitam.org

Abstract

The increasing demand for real-time, energy-efficient, and high-throughput inference of deep

neural networks has positioned FPGAs as a compelling hardware platform due to their inherent

parallelism, reconfigurability, and customizability. This book chapter investigates advanced

parallel processing frameworks on FPGAs tailored for neural network acceleration, emphasizing

architectural strategies that balance throughput, latency, and resource constraints. A

comprehensive analysis of data-level, task-level, pipeline, spatial, and hybrid parallelism is

presented, with a focus on their synergistic deployment to meet the unique computational

requirements of diverse deep learning models. Particular attention is given to loop pipelining and

systolic array-based spatial parallelism for matrix-intensive workloads, along with latency-

optimized inter-PE communication schemes. Model-specific parallelism control using meta-

compilers and high-level synthesis (HLS) pragmas is explored to demonstrate how automation and

model-awareness can drive architectural customization and performance scaling. By integrating

hardware-efficient techniques such as LUT-based activation computation, memory-optimized

dataflows, and pragma-directed code generation, the chapter outlines a practical path from

algorithmic description to deployable FPGA inference engines. The interaction between

architectural design choices and neural model characteristics is dissected to uncover optimization

opportunities for edge AI, embedded processing, and real-time signal interpretation. Experimental

insights and synthesis-driven validations further reinforce the feasibility of proposed frameworks

under realistic resource and timing constraints.

Keywords: FPGA, parallel processing, neural network inference, loop pipelining, systolic

array, high-level synthesis.

Introduction

The exponential growth in deep learning applications across domains such as autonomous

systems, healthcare diagnostics, and real-time video analytics has brought renewed focus on

specialized hardware for neural network inference [1]. While general-purpose CPUs and GPUs

have been traditionally used for deep learning tasks [2]. Their energy consumption, limited real-

time determinism, and relatively high latency pose challenges for edge-based and embedded

deployments [3]. In contrast, Field Programmable Gate Arrays (FPGAs) offer a promising

alternative by enabling application-specific acceleration with lower power budgets and higher

predictability [4]. Their fine-grained parallelism and configurability provide an adaptable substrate

mailto:ramjaganjagan@gmail.com
mailto:devim.cse@hitam.org

to map computational graphs of neural networks directly onto hardware, allowing for custom

dataflows and tightly coupled control over processing pipelines [5].

Neural networks, particularly deep and convolutional architectures, involve large-scale matrix

multiplications, nonlinear activation functions, and hierarchical feature extraction, which demand

high arithmetic throughput and efficient memory management [6]. FPGAs support spatial and

temporal parallelism that can be tailored to the exact workload, making them suitable for deploying

inference models with minimal bottlenecks [7]. The advancements in High-Level Synthesis (HLS)

tools have lowered the barrier to FPGA programming [8]. By abstracting low-level hardware

complexities into high-level representations, enabling algorithmic descriptions to be translated into

optimized RTL implementations [9]. This capability allows rapid design-space exploration for

various forms of parallelism, including pipelined computation, task-level concurrency, and data-

parallel execution across multiple processing elements [10].

