RADemics Parallel Processing
-rameworks on
-PGA for High
Throughput
Neural Network
Inference

R. Jegadeesan, A. Devi

JYOTHISHMATHI INSTITUTE OF TECHNOLOGY &
SCIENCE, HYDERABAD INSTITUTE OF TECHNOLOGY
AND MANAGEMENT




Parallel Processing Frameworks on FPGA for
High Throughput Neural Network Inference

IR. Jegadeesan, Professor & HOD, Department of Computer Science and Engineering,
Jyothishmathi Institute of Technology & Science, Nustulapur, Karimnagar, India.
ramjaganjagan@gmail.com

2A. Devi, Assistant Professor, Department of CSE, Hyderabad Institute of Technology and
Management, Hyderabad, Telangana, India. devim.cse@hitam.org

Abstract

The increasing demand for real-time, energy-efficient, and high-throughput inference of deep
neural networks has positioned FPGAs as a compelling hardware platform due to their inherent
parallelism, reconfigurability, and customizability. This book chapter investigates advanced
parallel processing frameworks on FPGAs tailored for neural network acceleration, emphasizing
architectural strategies that balance throughput, latency, and resource constraints. A
comprehensive analysis of data-level, task-level, pipeline, spatial, and hybrid parallelism is
presented, with a focus on their synergistic deployment to meet the unique computational
requirements of diverse deep learning models. Particular attention is given to loop pipelining and
systolic array-based spatial parallelism for matrix-intensive workloads, along with latency-
optimized inter-PE communication schemes. Model-specific parallelism control using meta-
compilers and high-level synthesis (HLS) pragmas is explored to demonstrate how automation and
model-awareness can drive architectural customization and performance scaling. By integrating
hardware-efficient techniques such as LUT-based activation computation, memory-optimized
dataflows, and pragma-directed code generation, the chapter outlines a practical path from
algorithmic description to deployable FPGA inference engines. The interaction between
architectural design choices and neural model characteristics is dissected to uncover optimization
opportunities for edge Al, embedded processing, and real-time signal interpretation. Experimental
insights and synthesis-driven validations further reinforce the feasibility of proposed frameworks
under realistic resource and timing constraints.

Keywords: FPGA, parallel processing, neural network inference, loop pipelining, systolic
array, high-level synthesis.

Introduction

The exponential growth in deep learning applications across domains such as autonomous
systems, healthcare diagnostics, and real-time video analytics has brought renewed focus on
specialized hardware for neural network inference [1]. While general-purpose CPUs and GPUs
have been traditionally used for deep learning tasks [2]. Their energy consumption, limited real-
time determinism, and relatively high latency pose challenges for edge-based and embedded
deployments [3]. In contrast, Field Programmable Gate Arrays (FPGAs) offer a promising
alternative by enabling application-specific acceleration with lower power budgets and higher
predictability [4]. Their fine-grained parallelism and configurability provide an adaptable substrate


mailto:ramjaganjagan@gmail.com
mailto:devim.cse@hitam.org

to map computational graphs of neural networks directly onto hardware, allowing for custom
dataflows and tightly coupled control over processing pipelines [5].

Neural networks, particularly deep and convolutional architectures, involve large-scale matrix
multiplications, nonlinear activation functions, and hierarchical feature extraction, which demand
high arithmetic throughput and efficient memory management [6]. FPGAs support spatial and
temporal parallelism that can be tailored to the exact workload, making them suitable for deploying
inference models with minimal bottlenecks [7]. The advancements in High-Level Synthesis (HLS)
tools have lowered the barrier to FPGA programming [8]. By abstracting low-level hardware
complexities into high-level representations, enabling algorithmic descriptions to be translated into
optimized RTL implementations [9]. This capability allows rapid design-space exploration for
various forms of parallelism, including pipelined computation, task-level concurrency, and data-
parallel execution across multiple processing elements [10].



